Hello Students,

Maths Formulas PDF is most important for all Sarkari exam. so today we Provide you Maths Formula Book PDF for SSC CGL Exam for competitive examswith important tricks. This 1000+ Math Formulas PDF for ssc with Solutions PDF for SSC, UPSC, Railway and All Competitive Exams. We Know That all Sarkari Exams are started after a few months. In those exams, / Many Questions are coming from, Maths. so  Download Maths Formulas PDF for SSC, UPSC, Railway and All Competitive Exams is important in all GOVT. Exams. Common questions are placed in Maths for Competitive Exams PDF in Hindi for SSC, UPSC, Railway and All Competitive Exams, which has been put together in most examinations, you can download, which has been put together in most examinations, you can download this Maths Formulas PDF very simply by clicking on the Download Button at the bottom.

Maths Formulas PDF, UPSC, Railway and All Competitive Exams, Paramount Maths, Rakesh Yadav Maths Notes PDF, Maths Shortcut Tricks. In  “ quicker maths by m tyra pdf ” is providing you the GK, REASONING, MATHES TOPICS   with ANSWER. Where you can easily get the maths handwritten notes in hindi pdf Plays an important role in EXAMS. Maths Formulas PDF is Providing free to download.

Every exam you will get at least 20-25 questions from Maths. So candidates must focus on Maths notes and download this Maths Book to get important questions with the best solutions. We have put all Previous Year Questions of Maths that are Asked in various Govt & Private Exam.

### Algebra Math Formula बीजगणित सूत्र

प्राकृतिक संख्या (Natural Numbers) – an – bn = (a – b)(an-1 + an-2 +…+ bn-2a + bn-1)

सम संख्या (Even) –  (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)

विषम संख्या (Odd) – (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)

(a + b + c + …)2 = a2 + b2 + c2 + … + 2(ab + ac + bc + ….

घातांक के नियम (Low Of Formula Exponents)

(am)(an) = am+n
(ab)m = ambm
(am)n = amn

a2 – b2 = (a – b)(a + b)

(a+b)2 = a2 + 2ab + b2

a2 + b2 = (a – b)2 + 2ab

(a – b)2 = a2 – 2ab + b2

(a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc

(a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc

(a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)

(a – b)3 = a3 – 3a2b + 3ab2 – b3

a3 – b3 = (a – b)(a2 + ab + b2)

a3 + b3 = (a + b)(a2 – ab + b2)

(a + b)3 = a3 + 3a2b + 3ab2 + b3

(a – b)3 = a3 – 3a2b + 3ab2 – b3

(a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)

(a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)

a4 – b4 = (a – b)(a + b)(a2 + b2)

a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)

### Trigonometry Math Formulas

» ѕιη0° =0

» ѕιη30° = 1/2

» ѕιη45° = 1/√2

» ѕιη60° = √3/2

» ѕιη90° = 1

» ¢σѕ ιѕ σρρσѕιтє σƒ ѕιη

» тαη0° = 0

» тαη30° = 1/√3

» тαη45° = 1

» тαη60° = √3

» тαη90° = ∞

» ¢σт ιѕ σρρσѕιтє σƒ тαη

» ѕє¢0° = 1

» ѕє¢30° = 2/√3

» ѕє¢45° = √2

» ѕє¢60° = 2

» ѕє¢90° = ∞

» ¢σѕє¢ ιѕ σρρσѕιтє σƒ ѕє¢

» 2ѕιηα¢σѕв=ѕιη(α+в)+ѕιη(α-в)

» 2¢σѕαѕιηв=ѕιη(α+в)-ѕιη(α-в)

» 2¢σѕα¢σѕв=¢σѕ(α+в)+¢σѕ(α-в)

» 2ѕιηαѕιηв=¢σѕ(α-в)-¢σѕ(α+в)

» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.

» ¢σѕ(α+в)=¢σѕα ¢σѕв – ѕιηα ѕιηв.

» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.

» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.

» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)

» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)

» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)

» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

» ѕιη(α+в)=ѕιηα ¢σѕв+ ¢σѕα ѕιηв.

» ¢σѕ(α+в)=¢σѕα ¢σѕв +ѕιηα ѕιηв.

» ѕιη(α-в)=ѕιηα¢σѕв-¢σѕαѕιηв.

» ¢σѕ(α-в)=¢σѕα¢σѕв+ѕιηαѕιηв.

» тαη(α+в)= (тαηα + тαηв)/ (1−тαηαтαηв)

» тαη(α−в)= (тαηα − тαηв) / (1+ тαηαтαηв)

» ¢σт(α+в)= (¢σтα¢σтв −1) / (¢σтα + ¢σтв)

» ¢σт(α−в)= (¢σтα¢σтв + 1) / (¢σтв− ¢σтα)

α/ѕιηα = в/ѕιηв = ¢/ѕιη¢ = 2я

» α = в ¢σѕ¢ + ¢ ¢σѕв

» в = α ¢σѕ¢ + ¢ ¢σѕα

» ¢ = α ¢σѕв + в ¢σѕα

» ¢σѕα = (в² + ¢²− α²) / 2в¢

» ¢σѕв = (¢² + α²− в²) / 2¢α

» ¢σѕ¢ = (α² + в²− ¢²) / 2¢α

» Δ = αв¢/4я

» ѕιηΘ = 0 тнєη,Θ = ηΠ

» ѕιηΘ = 1 тнєη,Θ = (4η + 1)Π/2

» ѕιηΘ =−1 тнєη,Θ = (4η− 1)Π/2

» ѕιηΘ = ѕιηα тнєη,Θ = ηΠ (−1)^ηα